Topological Indices of Nanotubes, Nanotori and Nanostars

نویسندگان

  • H. YOUSEFI-AZARI
  • A. R. ASHRAFI
  • M. H. KHALIFEH
چکیده

The Wiener index of a graph G is defined as W(G) = 1/2∑{x,y}⊆V(G)d(x,y), where V(G) is the set of all vertices of G and for x,y ∈ V(G), d(x,y) denotes the length of a minimal path between x and y. In this paper, we first report our recent results on computing Wiener, PI and Balaban indices of some nanotubes and nanotori. Next, the PI and Szeged indices of a new type of nanostar dendrimers are computed for the first time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing fourth atom-bond connectivity index of v-phenylenic nanotubes and nanotori.

Among topological descriptors connectivity topological indices are very important and they have a prominent role in chemistry. One of them is atom-bond connectivity (ABC) index defined as ABC(G)= [formula:see text], in which degree of vertex v denoted by dv . Recently, a new version of atom-bond connectivity (ABC4) index was introduced by M. Ghorbani et.al in 2010 and is defined as ABC4(G)= [fo...

متن کامل

Some inequalities for the atom-bond connectivity index of graph operations

The atom-bond connectivity index is a useful topological index in studying the stability of alkanes and the strain energy of cycloalkanes. In this paper some inequalities for the atom-bond connectivity index of a series of graph operations are presented. We also prove our bounds are tight. As an application, the ABC indices of C4 nanotubes and nanotori are computed. © 2011 Elsevier B.V. All rig...

متن کامل

Computing Some Connectivity Indices of V-phenylenic Nanotubes and Nanotori

Let G be a simple connected graph in chemical graph theory and uν e = be an edge of G. The Randić index ( ) G χ and sum-connectivity ( ) G X of a nontrivial connected graph G are defined as the sum of the weights ν ud d 1 and ν u d d + 1 over all edges ν u e = of G, respectively. In this paper, we compute Randić ( ) G χ and sum-connectivity ( ) G X indices of V-phenylenic nanotubes and nanotori.

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008